首页>>人工智能->人工智能训练模型有哪些(人工智能通过什么方法建立模型)

人工智能训练模型有哪些(人工智能通过什么方法建立模型)

时间:2023-12-09 本站 点击:0

导读:很多朋友问到关于人工智能训练模型有哪些的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

人工智能建模的5种类型

分析型AI、功能型AI、交互型AI、文本型AI、视觉型AI。

人工智能建模:通过模拟人认识客观事物和解决实际问题的方法对实际系统或系统的某一部分进行描述和表达的过程。也可以简述为利用人工智能方法对实际系统或系统的某一部分进行描述和表达的过程。

人工智能算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。

常见的监督学习算法包含以下几类:

(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。

(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)

贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。

(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。

(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)

线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。

常见的无监督学习类算法包括:

(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。

(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。

(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。

(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。

(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。

常见的半监督学习类算法包含:生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。

常见的深度学习类算法包含:深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。

1.二分类(Two-class Classification)

(1)二分类支持向量机(Two-class SVM):适用于数据特征较多、线性模型的场景。

(2)二分类平均感知器(Two-class Average Perceptron):适用于训练时间短、线性模型的场景。

(3)二分类逻辑回归(Two-class Logistic Regression):适用于训练时间短、线性模型的场景。

(4)二分类贝叶斯点机(Two-class Bayes Point Machine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-class Decision Forest):适用于训练时间短、精准的场景。

(6)二分类提升决策树(Two-class Boosted Decision Tree):适用于训练时间短、精准度高、内存占用量大的场景

(7)二分类决策丛林(Two-class Decision Jungle):适用于训练时间短、精确度高、内存占用量小的场景。

(8)二分类局部深度支持向量机(Two-class Locally Deep SVM):适用于数据特征较多的场景。

(9)二分类神经网络(Two-class Neural Network):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。

常用的算法:

(1)多分类逻辑回归(Multiclass Logistic Regression):适用训练时间短、线性模型的场景。

(2)多分类神经网络(Multiclass Neural Network):适用于精准度高、训练时间较长的场景。

(3)多分类决策森林(Multiclass Decision Forest):适用于精准度高,训练时间短的场景。

(4)多分类决策丛林(Multiclass Decision Jungle):适用于精准度高,内存占用较小的场景。

(5)“一对多”多分类(One-vs-all Multiclass):取决于二分类器效果。

回归

回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:

(1)排序回归(Ordinal Regression):适用于对数据进行分类排序的场景。

(2)泊松回归(Poission Regression):适用于预测事件次数的场景。

(3)快速森林分位数回归(Fast Forest Quantile Regression):适用于预测分布的场景。

(4)线性回归(Linear Regression):适用于训练时间短、线性模型的场景。

(5)贝叶斯线性回归(Bayesian Linear Regression):适用于线性模型,训练数据量较少的场景。

(6)神经网络回归(Neural Network Regression):适用于精准度高、训练时间较长的场景。

(7)决策森林回归(Decision Forest Regression):适用于精准度高、训练时间短的场景。

(8)提升决策树回归(Boosted Decision Tree Regression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类

聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。

(1)层次聚类(Hierarchical Clustering):适用于训练时间短、大数据量的场景。

(2)K-means算法:适用于精准度高、训练时间短的场景。

(3)模糊聚类FCM算法(Fuzzy C-means,FCM):适用于精确度高、训练时间短的场景。

(4)SOM神经网络(Self-organizing Feature Map,SOM):适用于运行时间较长的场景。

异常检测

异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。

异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:

(1)一分类支持向量机(One-class SVM):适用于数据特征较多的场景。

(2)基于PCA的异常检测(PCA-based Anomaly Detection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(Inductive Transfer Learning) 、直推式迁移学习(Transductive Transfer Learning)、无监督式迁移学习(Unsupervised Transfer Learning)、传递式迁移学习(Transitive Transfer Learning)等。

算法的适用场景:

需要考虑的因素有:

(1)数据量的大小、数据质量和数据本身的特点

(2)机器学习要解决的具体业务场景中问题的本质是什么?

(3)可以接受的计算时间是什么?

(4)算法精度要求有多高?

————————————————

原文链接:

AI人工智能-目标检测模型一览

目标检测是人工智能的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤:

1、分类,识别物体是什么

2、定位,找出物体在哪里

除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示:

这个问题并不是那么容易解决,由于物体的尺寸变化范围很大、摆放角度多变、姿态不定,而且物体有很多种类别,可以在图片中出现多种物体、出现在任意位置。因此,目标检测是一个比较复杂的问题。

最直接的方法便是构建一个深度神经网络,将图像和标注位置作为样本输入,然后经过CNN网络,再通过一个分类头(Classification head)的全连接层识别是什么物体,通过一个回归头(Regression head)的全连接层回归计算位置,如下图所示:

但“回归”不好做,计算量太大、收敛时间太长,应该想办法转为“分类”,这时容易想到套框的思路,即取不同大小的“框”,让框出现在不同的位置,计算出这个框的得分,然后取得分最高的那个框作为预测结果,如下图所示:

根据上面比较出来的得分高低,选择了右下角的黑框作为目标位置的预测。

但问题是:框要取多大才合适?太小,物体识别不完整;太大,识别结果多了很多其它信息。那怎么办?那就各种大小的框都取来计算吧。

如下图所示(要识别一只熊),用各种大小的框在图片中进行反复截取,输入到CNN中识别计算得分,最终确定出目标类别和位置。

这种方法效率很低,实在太耗时了。那有没有高效的目标检测方法呢?

一、R-CNN 横空出世

R-CNN(Region CNN,区域卷积神经网络)可以说是利用深度学习进行目标检测的开山之作,作者Ross Girshick多次在PASCAL VOC的目标检测竞赛中折桂,2010年更是带领团队获得了终身成就奖,如今就职于Facebook的人工智能实验室(FAIR)。

R-CNN算法的流程如下

1、输入图像

2、每张图像生成1K~2K个候选区域

3、对每个候选区域,使用深度网络提取特征(AlextNet、VGG等CNN都可以)

4、将特征送入每一类的SVM 分类器,判别是否属于该类

5、使用回归器精细修正候选框位置

下面展开进行介绍

1、生成候选区域

使用Selective Search(选择性搜索)方法对一张图像生成约2000-3000个候选区域,基本思路如下:

(1)使用一种过分割手段,将图像分割成小区域

(2)查看现有小区域,合并可能性最高的两个区域,重复直到整张图像合并成一个区域位置。优先合并以下区域:

3、类别判断

对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络(如上图的AlexNet)输出的4096维特征,输出是否属于此类。

4、位置精修

目标检测的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小,故需要一个位置精修步骤,对于每一个类,训练一个线性回归模型去判定这个框是否框得完美,如下图:

R-CNN将深度学习引入检测领域后,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。

二、Fast R-CNN大幅提速

继2014年的R-CNN推出之后,Ross Girshick在2015年推出Fast R-CNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。

Fast R-CNN和R-CNN相比,训练时间从84小时减少到9.5小时,测试时间从47秒减少到0.32秒,并且在PASCAL VOC 2007上测试的准确率相差无几,约在66%-67%之间。

Fast R-CNN主要解决R-CNN的以下问题:

1、训练、测试时速度慢

R-CNN的一张图像内候选框之间存在大量重叠,提取特征操作冗余。而Fast R-CNN将整张图像归一化后直接送入深度网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

2、训练所需空间大

R-CNN中独立的分类器和回归器需要大量特征作为训练样本。Fast R-CNN把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

下面进行详细介绍

1、在特征提取阶段, 通过CNN(如AlexNet)中的conv、pooling、relu等操作都不需要固定大小尺寸的输入,因此,在原始图片上执行这些操作后,输入图片尺寸不同将会导致得到的feature map(特征图)尺寸也不同,这样就不能直接接到一个全连接层进行分类。

在Fast R-CNN中,作者提出了一个叫做ROI Pooling的网络层,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量。ROI Pooling层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。这样虽然输入的图片尺寸不同,得到的feature map(特征图)尺寸也不同,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,就可再通过正常的softmax进行类型识别。

2、在分类回归阶段, 在R-CNN中,先生成候选框,然后再通过CNN提取特征,之后再用SVM分类,最后再做回归得到具体位置(bbox regression)。而在Fast R-CNN中,作者巧妙的把最后的bbox regression也放进了神经网络内部,与区域分类合并成为了一个multi-task模型,如下图所示:

实验表明,这两个任务能够共享卷积特征,并且相互促进。

Fast R-CNN很重要的一个贡献是成功地让人们看到了Region Proposal+CNN(候选区域+卷积神经网络)这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度。

三、Faster R-CNN更快更强

继2014年推出R-CNN,2015年推出Fast R-CNN之后,目标检测界的领军人物Ross Girshick团队在2015年又推出一力作:Faster R-CNN,使简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%,复杂网络达到5fps,准确率78.8%。

在Fast R-CNN还存在着瓶颈问题:Selective Search(选择性搜索)。要找出所有的候选框,这个也非常耗时。那我们有没有一个更加高效的方法来求出这些候选框呢?

在Faster R-CNN中加入一个提取边缘的神经网络,也就说找候选框的工作也交给神经网络来做了。这样,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。如下图所示:

Faster R-CNN可以简单地看成是“区域生成网络+Fast R-CNN”的模型,用区域生成网络(Region Proposal Network,简称RPN)来代替Fast R-CNN中的Selective Search(选择性搜索)方法。

如下图

RPN如下图:

RPN的工作步骤如下:

Faster R-CNN设计了提取候选区域的网络RPN,代替了费时的Selective Search(选择性搜索),使得检测速度大幅提升,下表对比了R-CNN、Fast R-CNN、Faster R-CNN的检测速度:

总结

R-CNN、Fast R-CNN、Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简、精度越来越高、速度也越来越快。基于region proposal(候选区域)的R-CNN系列目标检测方法是目标检测技术领域中的最主要分支之一。

为了更加精确地识别目标,实现在像素级场景中识别不同目标,利用“图像分割”技术定位每个目标的精确像素,如下图所示(精确分割出人、汽车、红绿灯等):

Mask R-CNN便是这种“图像分割”的重要模型。

Mask R-CNN的思路很简洁,既然Faster R-CNN目标检测的效果非常好,每个候选区域能输出种类标签和定位信息,那么就在Faster R-CNN的基础上再添加一个分支从而增加一个输出,即物体掩膜(object mask),也即由原来的两个任务(分类+回归)变为了三个任务(分类+回归+分割)。如下图所示,Mask R-CNN由两条分支组成:

Mask R-CNN的这两个分支是并行的,因此训练简单,仅比Faster R-CNN多了一点计算开销。

如下图所示,Mask R-CNN在Faster R-CNN中添加了一个全卷积网络的分支(图中白色部分),用于输出二进制mask,以说明给定像素是否是目标的一部分。所谓二进制mask,就是当像素属于目标的所有位置上时标识为1,其它位置标识为 0

从上图可以看出,二进制mask是基于特征图输出的,而原始图像经过一系列的卷积、池化之后,尺寸大小已发生了多次变化,如果直接使用特征图输出的二进制mask来分割图像,那肯定是不准的。这时就需要进行了修正,也即使用RoIAlign替换RoIPooling

如上图所示,原始图像尺寸大小是128x128,经过卷积网络之后的特征图变为尺寸大小变为 25x25。这时,如果想要圈出与原始图像中左上方15x15像素对应的区域,那么如何在特征图中选择相对应的像素呢?

从上面两张图可以看出,原始图像中的每个像素对应于特征图的25/128像素,因此,要从原始图像中选择15x15像素,则只需在特征图中选择2.93x2.93像素(15x25/128=2.93),在RoIAlign中会使用双线性插值法准确得到2.93像素的内容,这样就能很大程度上,避免了错位问题。

修改后的网络结构如下图所示(黑色部分为原来的Faster R-CNN,红色部分为Mask R-CNN修改的部分)

从上图可以看出损失函数变为

损失函数为分类误差+检测误差+分割误差,分类误差和检测(回归)误差是Faster R-CNN中的,分割误差为Mask R-CNN中新加的。

对于每个MxM大小的ROI区域,mask分支有KxMxM维的输出(K是指类别数量)。对于每一个像素,都是用sigmod函数求二值交叉熵,也即对每个像素都进行逻辑回归,得到平均的二值交叉熵误差Lmask。通过引入预测K个输出的机制,允许每个类都生成独立的mask,以避免类间竞争,这样就能解耦mask和种类预测。

对于每一个ROI区域,如果检测得到属于哪一个分类,就只使用该类的交叉熵误差进行计算,也即对于一个ROI区域中KxMxM的输出,真正有用的只是某个类别的MxM的输出。如下图所示:

例如目前有3个分类:猫、狗、人,检测得到当前ROI属于“人”这一类,那么所使用的Lmask为“人”这一分支的mask。

Mask R-CNN将这些二进制mask与来自Faster R-CNN的分类和边界框组合,便产生了惊人的图像精确分割,如下图所示:

Mask R-CNN是一个小巧、灵活的通用对象实例分割框架,它不仅可以对图像中的目标进行检测,还可以对每一个目标输出一个高质量的分割结果。另外,Mask R-CNN还易于泛化到其他任务,比如人物关键点检测,如下图所示:

从R-CNN、Fast R-CNN、Faster R-CNN到Mask R-CNN,每次进步不一定是跨越式的发展,这些进步实际上是直观的且渐进的改进之路,但是它们的总和却带来了非常显著的效果。

最后,总结一下目标检测算法模型的发展历程,如下图所示:

结语:以上就是首席CTO笔记为大家整理的关于人工智能训练模型有哪些的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/21866.html